← Back to Library

A Novel Evaluation Benchmark for Medical LLMs: Illuminating Safety and Effectiveness in Clinical Domains

Authors: Shirui Wang, Zhihui Tang, Huaxia Yang, Qiuhong Gong, Tiantian Gu, Hongyang Ma, Yongxin Wang, Wubin Sun, Zeliang Lian, Kehang Mao, Yinan Jiang, Zhicheng Huang, Lingyun Ma, Wenjie Shen, Yajie Ji, Yunhui Tan, Chunbo Wang, Yunlu Gao, Qianling Ye, Rui Lin, Mingyu Chen, Lijuan Niu, Zhihao Wang, Peng Yu, Mengran Lang, Yue Liu, Huimin Zhang, Haitao Shen, Long Chen, Qiguang Zhao, Si-Xuan Liu, Lina Zhou, Hua Gao, Dongqiang Ye, Lingmin Meng, Youtao Yu, Naixin Liang, Jianxiong Wu

Published: 2025-07-31

arXiv ID: 2507.23486v1

Added to Library: 2025-08-01 04:00 UTC

Safety

📄 Abstract

Large language models (LLMs) hold promise in clinical decision support but face major challenges in safety evaluation and effectiveness validation. We developed the Clinical Safety-Effectiveness Dual-Track Benchmark (CSEDB), a multidimensional framework built on clinical expert consensus, encompassing 30 criteria covering critical areas like critical illness recognition, guideline adherence, and medication safety, with weighted consequence measures. Thirty-two specialist physicians developed and reviewed 2,069 open-ended Q&A items aligned with these criteria, spanning 26 clinical departments to simulate real-world scenarios. Benchmark testing of six LLMs revealed moderate overall performance (average total score 57.2%, safety 54.7%, effectiveness 62.3%), with a significant 13.3% performance drop in high-risk scenarios (p < 0.0001). Domain-specific medical LLMs showed consistent performance advantages over general-purpose models, with relatively higher top scores in safety (0.912) and effectiveness (0.861). The findings of this study not only provide a standardized metric for evaluating the clinical application of medical LLMs, facilitating comparative analyses, risk exposure identification, and improvement directions across different scenarios, but also hold the potential to promote safer and more effective deployment of large language models in healthcare environments.

🤖 AI Analysis

AI analysis is not available for this paper. This may be because the paper was not deemed relevant for AI security topics, or the analysis failed during processing.

📚 Read the Full Paper