The widespread deployment of large language models (LLMs) has raised critical concerns over their vulnerability to jailbreak attacks, i.e., adversarial prompts that bypass alignment mechanisms and elicit harmful or policy-violating outputs. While proprietary models like GPT-4 have undergone extensive evaluation, the robustness of emerging open-source alternatives such as DeepSeek remains largely underexplored, despite their growing adoption in real-world applications. In this paper, we present the first systematic jailbreak evaluation of DeepSeek-series models, comparing them with GPT-3.5 and GPT-4 using the HarmBench benchmark. We evaluate seven representative attack strategies across 510 harmful behaviors categorized by both function and semantic domain. Our analysis reveals that DeepSeek's Mixture-of-Experts (MoE) architecture introduces routing sparsity that offers selective robustness against optimization-based attacks such as TAP-T, but leads to significantly higher vulnerability under prompt-based and manually engineered attacks. In contrast, GPT-4 Turbo demonstrates stronger and more consistent safety alignment across diverse behaviors, likely due to its dense Transformer design and reinforcement learning from human feedback. Fine-grained behavioral analysis and case studies further show that DeepSeek often routes adversarial prompts to under-aligned expert modules, resulting in inconsistent refusal behaviors. These findings highlight a fundamental trade-off between architectural efficiency and alignment generalization, emphasizing the need for targeted safety tuning and modular alignment strategies to ensure secure deployment of open-source LLMs.